Interlinked population balance and cybernetic models for the simultaneous saccharification and fermentation of natural polymers.

نویسندگان

  • Yong Kuen Ho
  • Pankaj Doshi
  • Hak Koon Yeoh
  • Gek Cheng Ngoh
چکیده

Simultaneous Saccharification and Fermentation (SSF) is a process where microbes have to first excrete extracellular enzymes to break polymeric substrates such as starch or cellulose into edible nutrients, followed by in situ conversion of those nutrients into more valuable metabolites via fermentation. As such, SSF is very attractive as a one-pot synthesis method of biological products. However, due to the co-existence of multiple biochemical steps, modeling SSF faces two major challenges. The first is to capture the successive chain-end and/or random scission of the polymeric substrates over time, which determines the rate of generation of various fermentable substrates. The second is to incorporate the response of microbes, including their preferential substrate utilization, to such a complex broth. Each of the above-mentioned challenges has manifested itself in many related areas, and has been competently but separately attacked with two diametrically different tools, i.e., the Population Balance Modeling (PBM) and the Cybernetic Modeling (CM), respectively. To date, they have yet to be applied in unison on SSF resulting in a general inadequacy or haphazard approaches to examine the dynamics and interactions of depolymerization and fermentation. To overcome this unsatisfactory state of affairs, here, the general linkage between PBM and CM is established to model SSF. A notable feature is the flexible linkage, which allows the individual PBM and CM models to be independently modified to the desired levels of detail. A more general treatment of the secretion of extracellular enzyme is also proposed in the CM model. Through a case study on the growth of a recombinant Saccharomyces cerevisiae capable of excreting a chain-end scission enzyme (glucoamylase) on starch, the interlinked model calibrated using data from the literature (Nakamura et al., Biotechnol. Bioeng. 53:21-25, 1997), captured features not attainable by existing approaches. In particular, the effect of various enzymatic actions on the temporal evolution of the polymer distribution and how the microbes respond to the diverse polymeric environment can be studied through this framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Process optimization for ethanol production from very high gravity (VHG) finger millet medium using response surface methodology

The Box-Wilson central composite design (CCD) based on response surface methodology (RSM) was used for ethanol fermentation using very high gravity (VHG) finger millet hydrolysate. Optimized process variables were namely, concentrations of yeast extract, magnesium sulphate and pH of the medium. High gravity mashes (>300 g dissolved solids per liter) were prepared by a thermo-stable α-amylase, f...

متن کامل

The Effect of pH on Simultaneous Saccharification and Fermentation Process of Water Hyacinth (Eichhornia crassipes (Mart.) Solms.) Using Trichoderma harzianum and Saccharomyces cerevisiae

Research has been done on simultaneous saccharification and fermentation of water hyacinth (Eichhornia crassipes (Mart.) Solms.) with different pH to produce bioethanol. Simultaneous saccharification and fermentation process was the integration between saccharification or hydrolysis of cellulose into sugar and fermentation of sugar into ethanol, with utilized microorganism of Trichoderma harzia...

متن کامل

Downstream optimization of fungal-based simultaneous saccharification and fermentation relevant to lignocellulosic ethanol production

To support the inefficient limitation of long-term biosystem by well-known simultaneous saccharification and fermentation (SSF), electron beam irradiated rice straw (at 80 kGy, 1 MeV, and 0.12 mA) was fermented using fungal-based simultaneous saccharification and fermentation (FBSSF) by saprophytic zygomycetes Mucor indicus. Based on the growth optimization (by response surface methodology), th...

متن کامل

Enzyme-based Hydrolysis Processes for Ethanol from Lignocellulosic Materials: a Review

This article reviews developments in the technology for ethanol production from lignocellulosic materials by “enzymatic” processes. Several methods of pretreatment of lignocelluloses are discussed, where the crystalline structure of lignocelluloses is opened up, making them more accessible to the cellulase enzymes. The characteristics of these enzymes and important factors in enzymatic hydrolys...

متن کامل

Enhanced Ethanol Production from De-ashed Paper Sludge by Simultaneous Saccharification and Fermentation and Simultaneous Saccharification and Co-fermentation

A previous study demonstrated that paper sludges with high ash contents can be converted to ethanol by simultaneous saccharification and fermentation (SSF) or simultaneous saccharification and cofermentation (SSCF). High ash content in the sludge, however, limited solid loading in the bioreactor, causing low product concentration. To overcome this problem, sludges were de-ashed before SSF and S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 112 10  شماره 

صفحات  -

تاریخ انتشار 2015